Step 1 :
After factoring out $ -1 $ we have:
$$ -4x^{2}+31x-21 = - ~ ( 4x^{2}-31x+21 ) $$Step 2 :
Step 2: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 3: Multiply the leading coefficient $\color{blue}{ a = 4 }$ by the constant term $\color{blue}{c = 21} $.
$$ a \cdot c = 84 $$Step 4: Find out two numbers that multiply to $ a \cdot c = 84 $ and add to $ b = -31 $.
Step 5: All pairs of numbers with a product of $ 84 $ are:
PRODUCT = 84 | |
1 84 | -1 -84 |
2 42 | -2 -42 |
3 28 | -3 -28 |
4 21 | -4 -21 |
6 14 | -6 -14 |
7 12 | -7 -12 |
Step 6: Find out which factor pair sums up to $\color{blue}{ b = -31 }$
PRODUCT = 84 and SUM = -31 | |
1 84 | -1 -84 |
2 42 | -2 -42 |
3 28 | -3 -28 |
4 21 | -4 -21 |
6 14 | -6 -14 |
7 12 | -7 -12 |
Step 7: Replace middle term $ -31 x $ with $ -3x-28x $:
$$ 4x^{2}-31x+21 = 4x^{2}-3x-28x+21 $$Step 8: Apply factoring by grouping. Factor $ x $ out of the first two terms and $ -7 $ out of the last two terms.
$$ 4x^{2}-3x-28x+21 = x\left(4x-3\right) -7\left(4x-3\right) = \left(x-7\right) \left(4x-3\right) $$