Step 1 :
After factoring out $ -1 $ we have:
$$ -4x^{2}-61x-117 = - ~ ( 4x^{2}+61x+117 ) $$Step 2 :
Step 2: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 3: Multiply the leading coefficient $\color{blue}{ a = 4 }$ by the constant term $\color{blue}{c = 117} $.
$$ a \cdot c = 468 $$Step 4: Find out two numbers that multiply to $ a \cdot c = 468 $ and add to $ b = 61 $.
Step 5: All pairs of numbers with a product of $ 468 $ are:
PRODUCT = 468 | |
1 468 | -1 -468 |
2 234 | -2 -234 |
3 156 | -3 -156 |
4 117 | -4 -117 |
6 78 | -6 -78 |
9 52 | -9 -52 |
12 39 | -12 -39 |
13 36 | -13 -36 |
18 26 | -18 -26 |
Step 6: Find out which factor pair sums up to $\color{blue}{ b = 61 }$
PRODUCT = 468 and SUM = 61 | |
1 468 | -1 -468 |
2 234 | -2 -234 |
3 156 | -3 -156 |
4 117 | -4 -117 |
6 78 | -6 -78 |
9 52 | -9 -52 |
12 39 | -12 -39 |
13 36 | -13 -36 |
18 26 | -18 -26 |
Step 7: Replace middle term $ 61 x $ with $ 52x+9x $:
$$ 4x^{2}+61x+117 = 4x^{2}+52x+9x+117 $$Step 8: Apply factoring by grouping. Factor $ 4x $ out of the first two terms and $ 9 $ out of the last two terms.
$$ 4x^{2}+52x+9x+117 = 4x\left(x+13\right) + 9\left(x+13\right) = \left(4x+9\right) \left(x+13\right) $$