Step 1: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 2: Multiply the leading coefficient $\color{blue}{ a = 20 }$ by the constant term $\color{blue}{c = 20} $.
$$ a \cdot c = 400 $$Step 3: Find out two numbers that multiply to $ a \cdot c = 400 $ and add to $ b = -41 $.
Step 4: All pairs of numbers with a product of $ 400 $ are:
PRODUCT = 400 | |
1 400 | -1 -400 |
2 200 | -2 -200 |
4 100 | -4 -100 |
5 80 | -5 -80 |
8 50 | -8 -50 |
10 40 | -10 -40 |
16 25 | -16 -25 |
20 20 | -20 -20 |
Step 5: Find out which factor pair sums up to $\color{blue}{ b = -41 }$
PRODUCT = 400 and SUM = -41 | |
1 400 | -1 -400 |
2 200 | -2 -200 |
4 100 | -4 -100 |
5 80 | -5 -80 |
8 50 | -8 -50 |
10 40 | -10 -40 |
16 25 | -16 -25 |
20 20 | -20 -20 |
Step 6: Replace middle term $ -41 x $ with $ -16x-25x $:
$$ 20x^{2}-41x+20 = 20x^{2}-16x-25x+20 $$Step 7: Apply factoring by grouping. Factor $ 4x $ out of the first two terms and $ -5 $ out of the last two terms.
$$ 20x^{2}-16x-25x+20 = 4x\left(5x-4\right) -5\left(5x-4\right) = \left(4x-5\right) \left(5x-4\right) $$