It seems that $ -3x^{2}+10x+420 $ cannot be factored out.
Step 1 :
After factoring out $ -1 $ we have:
$$ -3x^{2}+10x+420 = - ~ ( 3x^{2}-10x-420 ) $$Step 2 :
Step 2: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 3: Multiply the leading coefficient $\color{blue}{ a = 3 }$ by the constant term $\color{blue}{c = -420} $.
$$ a \cdot c = -1260 $$Step 4: Find out two numbers that multiply to $ a \cdot c = -1260 $ and add to $ b = -10 $.
Step 5: All pairs of numbers with a product of $ -1260 $ are:
PRODUCT = -1260 | |
-1 1260 | 1 -1260 |
-2 630 | 2 -630 |
-3 420 | 3 -420 |
-4 315 | 4 -315 |
-5 252 | 5 -252 |
-6 210 | 6 -210 |
-7 180 | 7 -180 |
-9 140 | 9 -140 |
-10 126 | 10 -126 |
-12 105 | 12 -105 |
-14 90 | 14 -90 |
-15 84 | 15 -84 |
-18 70 | 18 -70 |
-20 63 | 20 -63 |
-21 60 | 21 -60 |
-28 45 | 28 -45 |
-30 42 | 30 -42 |
-35 36 | 35 -36 |
Step 6: Find out which factor pair sums up to $\color{blue}{ b = -10 }$
Step 7: Because none of these pairs will give us a sum of $ \color{blue}{ -10 }$, we conclude the polynomial cannot be factored.