Step 1 :
After factoring out $ -1 $ we have:
$$ -3x^{2}-16x-5 = - ~ ( 3x^{2}+16x+5 ) $$Step 2 :
Step 2: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 3: Multiply the leading coefficient $\color{blue}{ a = 3 }$ by the constant term $\color{blue}{c = 5} $.
$$ a \cdot c = 15 $$Step 4: Find out two numbers that multiply to $ a \cdot c = 15 $ and add to $ b = 16 $.
Step 5: All pairs of numbers with a product of $ 15 $ are:
PRODUCT = 15 | |
1 15 | -1 -15 |
3 5 | -3 -5 |
Step 6: Find out which factor pair sums up to $\color{blue}{ b = 16 }$
PRODUCT = 15 and SUM = 16 | |
1 15 | -1 -15 |
3 5 | -3 -5 |
Step 7: Replace middle term $ 16 x $ with $ 15x+x $:
$$ 3x^{2}+16x+5 = 3x^{2}+15x+x+5 $$Step 8: Apply factoring by grouping. Factor $ 3x $ out of the first two terms and $ 1 $ out of the last two terms.
$$ 3x^{2}+15x+x+5 = 3x\left(x+5\right) + 1\left(x+5\right) = \left(3x+1\right) \left(x+5\right) $$