Step 1 :
After factoring out $ -2x $ we have:
$$ -2x^{4}-2x^{3}+18x^{2}+18x = -2x ( x^{3}+x^{2}-9x-9 ) $$Step 2 :
To factor $ x^{3}+x^{2}-9x-9 $ we can use factoring by grouping:
Group $ \color{blue}{ x^{3} }$ with $ \color{blue}{ x^{2} }$ and $ \color{red}{ -9x }$ with $ \color{red}{ -9 }$ then factor each group.
$$ \begin{aligned} x^{3}+x^{2}-9x-9 = ( \color{blue}{ x^{3}+x^{2} } ) + ( \color{red}{ -9x-9 }) &= \\ &= \color{blue}{ x^{2}( x+1 )} + \color{red}{ -9( x+1 ) } = \\ &= (x^{2}-9)(x+1) \end{aligned} $$Step 3 :
Rewrite $ x^{2}-9 $ as:
$$ x^{2}-9 = (x)^2 - (3)^2 $$Now we can apply the difference of squares formula.
$$ I^2 - II^2 = (I - II)(I + II) $$After putting $ I = x $ and $ II = 3 $ , we have:
$$ x^{2}-9 = (x)^2 - (3)^2 = ( x-3 ) ( x+3 ) $$