back to index
Factor polynomial $$ -2x^{3}+3x^{5}-3x^{7}+x^{9}+2ax-4ax^{3}+6ax^{5}-3ax^{7}+a^{2}x-3a^{2}x^{3}+3a^{2}x^{5}-a^{3}x^{3} $$
Answer
$$ -2x^{3}+3x^{5}-3x^{7}+x^{9}+2ax-4ax^{3}+6ax^{5}-3ax^{7}+a^{2}x-3a^{2}x^{3}+3a^{2}x^{5}-a^{3}x^{3} = -x(2x^{2}-3x^{4}+3x^{6}-x^{8}-2a+4ax^{2}-6ax^{4}+3ax^{6}-a^{2}+3a^{2}x^{2}-3a^{2}x^{4}+a^{3}x^{2}) $$
Explanation
Factor out common factor $ \color{blue}{ -x } $:
$$ -2x^3+3x^5-3x^7+x^9+2ax-4ax^3+6ax^5-3ax^7+a^2x-3a^2x^3+3a^2x^5-a^3x^3 = -x ( 2x^2-3x^4+3x^6-x^8-2a+4ax^2-6ax^4+3ax^6-a^2+3a^2x^2-3a^2x^4+a^3x^2 ) $$