It seems that $ -2x^{2}-6x+3 $ cannot be factored out.
Step 1 :
After factoring out $ -1 $ we have:
$$ -2x^{2}-6x+3 = - ~ ( 2x^{2}+6x-3 ) $$Step 2 :
Step 2: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 3: Multiply the leading coefficient $\color{blue}{ a = 2 }$ by the constant term $\color{blue}{c = -3} $.
$$ a \cdot c = -6 $$Step 4: Find out two numbers that multiply to $ a \cdot c = -6 $ and add to $ b = 6 $.
Step 5: All pairs of numbers with a product of $ -6 $ are:
PRODUCT = -6 | |
-1 6 | 1 -6 |
-2 3 | 2 -3 |
Step 6: Find out which factor pair sums up to $\color{blue}{ b = 6 }$
Step 7: Because none of these pairs will give us a sum of $ \color{blue}{ 6 }$, we conclude the polynomial cannot be factored.