Step 1 :
After factoring out $ -1 $ we have:
$$ -2x^{2}-19x-45 = - ~ ( 2x^{2}+19x+45 ) $$Step 2 :
Step 2: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 3: Multiply the leading coefficient $\color{blue}{ a = 2 }$ by the constant term $\color{blue}{c = 45} $.
$$ a \cdot c = 90 $$Step 4: Find out two numbers that multiply to $ a \cdot c = 90 $ and add to $ b = 19 $.
Step 5: All pairs of numbers with a product of $ 90 $ are:
PRODUCT = 90 | |
1 90 | -1 -90 |
2 45 | -2 -45 |
3 30 | -3 -30 |
5 18 | -5 -18 |
6 15 | -6 -15 |
9 10 | -9 -10 |
Step 6: Find out which factor pair sums up to $\color{blue}{ b = 19 }$
PRODUCT = 90 and SUM = 19 | |
1 90 | -1 -90 |
2 45 | -2 -45 |
3 30 | -3 -30 |
5 18 | -5 -18 |
6 15 | -6 -15 |
9 10 | -9 -10 |
Step 7: Replace middle term $ 19 x $ with $ 10x+9x $:
$$ 2x^{2}+19x+45 = 2x^{2}+10x+9x+45 $$Step 8: Apply factoring by grouping. Factor $ 2x $ out of the first two terms and $ 9 $ out of the last two terms.
$$ 2x^{2}+10x+9x+45 = 2x\left(x+5\right) + 9\left(x+5\right) = \left(2x+9\right) \left(x+5\right) $$