Step 1 :
After factoring out $ -5x $ we have:
$$ -25x^{3}-340x^{2}+525x = -5x ( 5x^{2}+68x-105 ) $$Step 2 :
Step 2: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 3: Multiply the leading coefficient $\color{blue}{ a = 5 }$ by the constant term $\color{blue}{c = -105} $.
$$ a \cdot c = -525 $$Step 4: Find out two numbers that multiply to $ a \cdot c = -525 $ and add to $ b = 68 $.
Step 5: All pairs of numbers with a product of $ -525 $ are:
PRODUCT = -525 | |
-1 525 | 1 -525 |
-3 175 | 3 -175 |
-5 105 | 5 -105 |
-7 75 | 7 -75 |
-15 35 | 15 -35 |
-21 25 | 21 -25 |
Step 6: Find out which factor pair sums up to $\color{blue}{ b = 68 }$
PRODUCT = -525 and SUM = 68 | |
-1 525 | 1 -525 |
-3 175 | 3 -175 |
-5 105 | 5 -105 |
-7 75 | 7 -75 |
-15 35 | 15 -35 |
-21 25 | 21 -25 |
Step 7: Replace middle term $ 68 x $ with $ 75x-7x $:
$$ 5x^{2}+68x-105 = 5x^{2}+75x-7x-105 $$Step 8: Apply factoring by grouping. Factor $ 5x $ out of the first two terms and $ -7 $ out of the last two terms.
$$ 5x^{2}+75x-7x-105 = 5x\left(x+15\right) -7\left(x+15\right) = \left(5x-7\right) \left(x+15\right) $$