Step 1 :
After factoring out $ -1 $ we have:
$$ -25x^{2}+65x-42 = - ~ ( 25x^{2}-65x+42 ) $$Step 2 :
Step 2: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 3: Multiply the leading coefficient $\color{blue}{ a = 25 }$ by the constant term $\color{blue}{c = 42} $.
$$ a \cdot c = 1050 $$Step 4: Find out two numbers that multiply to $ a \cdot c = 1050 $ and add to $ b = -65 $.
Step 5: All pairs of numbers with a product of $ 1050 $ are:
PRODUCT = 1050 | |
1 1050 | -1 -1050 |
2 525 | -2 -525 |
3 350 | -3 -350 |
5 210 | -5 -210 |
6 175 | -6 -175 |
7 150 | -7 -150 |
10 105 | -10 -105 |
14 75 | -14 -75 |
15 70 | -15 -70 |
21 50 | -21 -50 |
25 42 | -25 -42 |
30 35 | -30 -35 |
Step 6: Find out which factor pair sums up to $\color{blue}{ b = -65 }$
PRODUCT = 1050 and SUM = -65 | |
1 1050 | -1 -1050 |
2 525 | -2 -525 |
3 350 | -3 -350 |
5 210 | -5 -210 |
6 175 | -6 -175 |
7 150 | -7 -150 |
10 105 | -10 -105 |
14 75 | -14 -75 |
15 70 | -15 -70 |
21 50 | -21 -50 |
25 42 | -25 -42 |
30 35 | -30 -35 |
Step 7: Replace middle term $ -65 x $ with $ -30x-35x $:
$$ 25x^{2}-65x+42 = 25x^{2}-30x-35x+42 $$Step 8: Apply factoring by grouping. Factor $ 5x $ out of the first two terms and $ -7 $ out of the last two terms.
$$ 25x^{2}-30x-35x+42 = 5x\left(5x-6\right) -7\left(5x-6\right) = \left(5x-7\right) \left(5x-6\right) $$