Step 1 :
After factoring out $ -5x $ we have:
$$ -15x^{3}+5x^{2}+220x = -5x ( 3x^{2}-x-44 ) $$Step 2 :
Step 2: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 3: Multiply the leading coefficient $\color{blue}{ a = 3 }$ by the constant term $\color{blue}{c = -44} $.
$$ a \cdot c = -132 $$Step 4: Find out two numbers that multiply to $ a \cdot c = -132 $ and add to $ b = -1 $.
Step 5: All pairs of numbers with a product of $ -132 $ are:
PRODUCT = -132 | |
-1 132 | 1 -132 |
-2 66 | 2 -66 |
-3 44 | 3 -44 |
-4 33 | 4 -33 |
-6 22 | 6 -22 |
-11 12 | 11 -12 |
Step 6: Find out which factor pair sums up to $\color{blue}{ b = -1 }$
PRODUCT = -132 and SUM = -1 | |
-1 132 | 1 -132 |
-2 66 | 2 -66 |
-3 44 | 3 -44 |
-4 33 | 4 -33 |
-6 22 | 6 -22 |
-11 12 | 11 -12 |
Step 7: Replace middle term $ -1 x $ with $ 11x-12x $:
$$ 3x^{2}-x-44 = 3x^{2}+11x-12x-44 $$Step 8: Apply factoring by grouping. Factor $ x $ out of the first two terms and $ -4 $ out of the last two terms.
$$ 3x^{2}+11x-12x-44 = x\left(3x+11\right) -4\left(3x+11\right) = \left(x-4\right) \left(3x+11\right) $$