back to index
$$x^2+\frac{101}{100}x^4+\frac{1}{400}x^6-25 = 0$$
Answer
$$ \begin{matrix}x_1 = -2.11716 & x_2 = 2.11716 & x_3 = 2.35301i \\[1 em] x_4 = -2.35301i & x_5 = 20.07351i & x_6 = -20.07351i \end{matrix} $$
Explanation
$$ \begin{aligned} x^2+\frac{101}{100}x^4+\frac{1}{400}x^6-25 &= 0&& \text{multiply ALL terms by } \color{blue}{ 400 }. \\[1 em]400x^2+400 \cdot \frac{101}{100}x^4+400\frac{1}{400}x^6-400\cdot25 &= 400\cdot0&& \text{cancel out the denominators} \\[1 em]400x^2+404x^4+x^6-10000 &= 0&& \text{simplify left side} \\[1 em]x^6+404x^4+400x^2-10000 &= 0&& \\[1 em] \end{aligned} $$
This polynomial has no rational roots that can be found using Rational Root Test.
Roots were found using Newton method.
This page was created using
Polynomial Equations Solver