back to index
$$x^2+\frac{82}{100}x+\frac{144}{100} = 0$$
Answer
$$ \begin{matrix}x_1 = -\dfrac{ 41 }{ 100 }+\dfrac{\sqrt{ 12719 }}{ 100 }i & x_2 = -\dfrac{ 41 }{ 100 }-\dfrac{\sqrt{ 12719 }}{ 100 }i \\[1 em] \end{matrix} $$
Explanation
$$ \begin{aligned} x^2+\frac{82}{100}x+\frac{144}{100} &= 0&& \text{multiply ALL terms by } \color{blue}{ 100 }. \\[1 em]100x^2+100 \cdot \frac{82}{100}x+100\cdot\frac{144}{100} &= 100\cdot0&& \text{cancel out the denominators} \\[1 em]100x^2+82x+144 &= 0&& \\[1 em] \end{aligned} $$
$ 100x^{2}+82x+144 = 0 $ is a quadratic equation.
You can use step-by-step quadratic equation solver to see a detailed explanation on how to solve this equation.
This page was created using
Polynomial Equations Solver