back to index
$$x^2-\frac{6}{5}x+\frac{4}{25} = 0$$
Answer
$$ \begin{matrix}x_1 = \dfrac{ 3 }{ 5 }-\dfrac{\sqrt{ 5 }}{ 5 } & x_2 = \dfrac{ 3 }{ 5 }+\dfrac{\sqrt{ 5 }}{ 5 } \\[1 em] \end{matrix} $$
Explanation
$$ \begin{aligned} x^2-\frac{6}{5}x+\frac{4}{25} &= 0&& \text{multiply ALL terms by } \color{blue}{ 25 }. \\[1 em]25x^2-25 \cdot \frac{6}{5}x+25\cdot\frac{4}{25} &= 25\cdot0&& \text{cancel out the denominators} \\[1 em]25x^2-30x+4 &= 0&& \\[1 em] \end{aligned} $$
$ 25x^{2}-30x+4 = 0 $ is a quadratic equation.
You can use step-by-step quadratic equation solver to see a detailed explanation on how to solve this equation.
This page was created using
Polynomial Equations Solver