back to index
$$x^2-\frac{45}{7}x-7 = 0$$
Answer
$$ \begin{matrix}x_1 = \dfrac{ 45 }{ 14 }-\dfrac{\sqrt{ 3397 }}{ 14 } & x_2 = \dfrac{ 45 }{ 14 }+\dfrac{\sqrt{ 3397 }}{ 14 } \\[1 em] \end{matrix} $$
Explanation
$$ \begin{aligned} x^2-\frac{45}{7}x-7 &= 0&& \text{multiply ALL terms by } \color{blue}{ 7 }. \\[1 em]7x^2-7 \cdot \frac{45}{7}x-7\cdot7 &= 7\cdot0&& \text{cancel out the denominators} \\[1 em]7x^2-45x-49 &= 0&& \\[1 em] \end{aligned} $$
$ 7x^{2}-45x-49 = 0 $ is a quadratic equation.
You can use step-by-step quadratic equation solver to see a detailed explanation on how to solve this equation.
This page was created using
Polynomial Equations Solver