back to index
$$x^2-2x+\frac{75}{100} = 0$$
Answer
$$ \begin{matrix}x_1 = \dfrac{ 1 }{ 2 } & x_2 = \dfrac{ 3 }{ 2 } \\[1 em] \end{matrix} $$
Explanation
$$ \begin{aligned} x^2-2x+\frac{75}{100} &= 0&& \text{multiply ALL terms by } \color{blue}{ 100 }. \\[1 em]100x^2-100\cdot2x+100\cdot\frac{75}{100} &= 100\cdot0&& \text{cancel out the denominators} \\[1 em]100x^2-200x+75 &= 0&& \\[1 em] \end{aligned} $$
$ 100x^{2}-200x+75 = 0 $ is a quadratic equation.
You can use step-by-step quadratic equation solver to see a detailed explanation on how to solve this equation.
This page was created using
Polynomial Equations Solver