back to index
$$x^2-\frac{18}{10}x+\frac{144}{100} = 0$$
Answer
$$ \begin{matrix}x_1 = \dfrac{ 9 }{ 10 }+\dfrac{ 3 \sqrt{ 7}}{ 10 }i & x_2 = \dfrac{ 9 }{ 10 }-\dfrac{ 3 \sqrt{ 7}}{ 10 }i \\[1 em] \end{matrix} $$
Explanation
$$ \begin{aligned} x^2-\frac{18}{10}x+\frac{144}{100} &= 0&& \text{multiply ALL terms by } \color{blue}{ 100 }. \\[1 em]100x^2-100 \cdot \frac{18}{10}x+100\cdot\frac{144}{100} &= 100\cdot0&& \text{cancel out the denominators} \\[1 em]100x^2-180x+144 &= 0&& \\[1 em] \end{aligned} $$
$ 100x^{2}-180x+144 = 0 $ is a quadratic equation.
You can use step-by-step quadratic equation solver to see a detailed explanation on how to solve this equation.
This page was created using
Polynomial Equations Solver