back to index
$$x^2+\frac{11}{100}x+\frac{11}{100000} = 0$$
Answer
$$ \begin{matrix}x_1 = -\dfrac{ 11 }{ 200 }-\dfrac{\sqrt{ 2915 }}{ 1000 } & x_2 = -\dfrac{ 11 }{ 200 }+\dfrac{\sqrt{ 2915 }}{ 1000 } \\[1 em] \end{matrix} $$
Explanation
$$ \begin{aligned} x^2+\frac{11}{100}x+\frac{11}{100000} &= 0&& \text{multiply ALL terms by } \color{blue}{ 100000 }. \\[1 em]100000x^2+100000 \cdot \frac{11}{100}x+100000\cdot\frac{11}{100000} &= 100000\cdot0&& \text{cancel out the denominators} \\[1 em]100000x^2+11000x+11 &= 0&& \\[1 em] \end{aligned} $$
$ 100000x^{2}+11000x+11 = 0 $ is a quadratic equation.
You can use step-by-step quadratic equation solver to see a detailed explanation on how to solve this equation.
This page was created using
Polynomial Equations Solver