back to index
$$\frac{981}{200}t^2+400t-150 = 0$$
Answer
$$ \begin{matrix}t_1 = -\dfrac{ 40000 }{ 981 }-\dfrac{ 100 \sqrt{ 162943}}{ 981 } & t_2 = -\dfrac{ 40000 }{ 981 }+\dfrac{ 100 \sqrt{ 162943}}{ 981 } \\[1 em] \end{matrix} $$
Explanation
$$ \begin{aligned} \frac{981}{200}t^2+400t-150 &= 0&& \text{multiply ALL terms by } \color{blue}{ 200 }. \\[1 em]200 \cdot \frac{981}{200}t^2+200\cdot400t-200\cdot150 &= 200\cdot0&& \text{cancel out the denominators} \\[1 em]981t^2+80000t-30000 &= 0&& \\[1 em] \end{aligned} $$
$ 981x^{2}+80000x-30000 = 0 $ is a quadratic equation.
You can use step-by-step quadratic equation solver to see a detailed explanation on how to solve this equation.
This page was created using
Polynomial Equations Solver