back to index
$$\frac{73}{36}x^3-\frac{73}{2}x^2 = 0$$
Answer
$$ \begin{matrix}x_1 = 0 & x_2 = 18 \\[1 em] \end{matrix} $$
Explanation
$$ \begin{aligned} \frac{73}{36}x^3-\frac{73}{2}x^2 &= 0&& \text{multiply ALL terms by } \color{blue}{ 36 }. \\[1 em]36 \cdot \frac{73}{36}x^3-36\frac{73}{2}x^2 &= 36\cdot0&& \text{cancel out the denominators} \\[1 em]73x^3-1314x^2 &= 0&& \\[1 em] \end{aligned} $$
In order to solve $ \color{blue}{ 73x^{3}-1314x^{2} = 0 } $, first we need to factor our $ x^2 $.
$$ 73x^{3}-1314x^{2} = x^2 \left( 73x-1314 \right) $$
$ x = 0 $ is a root of multiplicity $ 2 $.
The second root can be found by solving equation $ 73x-1314 = 0$.
This page was created using
Polynomial Equations Solver