back to index
$$\frac{49}{10}x^2+14x-20 = 0$$
Answer
$$ \begin{matrix}x_1 = -\dfrac{ 10 }{ 7 }-\dfrac{ 10 \sqrt{ 3}}{ 7 } & x_2 = -\dfrac{ 10 }{ 7 }+\dfrac{ 10 \sqrt{ 3}}{ 7 } \\[1 em] \end{matrix} $$
Explanation
$$ \begin{aligned} \frac{49}{10}x^2+14x-20 &= 0&& \text{multiply ALL terms by } \color{blue}{ 10 }. \\[1 em]10 \cdot \frac{49}{10}x^2+10\cdot14x-10\cdot20 &= 10\cdot0&& \text{cancel out the denominators} \\[1 em]49x^2+140x-200 &= 0&& \\[1 em] \end{aligned} $$
$ 49x^{2}+140x-200 = 0 $ is a quadratic equation.
You can use step-by-step quadratic equation solver to see a detailed explanation on how to solve this equation.
This page was created using
Polynomial Equations Solver