$ \color{blue}{ 3x^{3}-3x^{2}-99x-189 } $ is a polynomial of degree 3. To find zeros for polynomials of degree 3 or higher we use Rational Root Test.
The Rational Root Theorem tells you that if the polynomial has a rational zero then it must be a fraction $ \dfrac{p}{q} $, where p is a factor of the trailing constant and q is a factor of the leading coefficient.
The factors of the leading coefficient ( 3 ) are 1 3 .The factors of the constant term (-189) are 1 3 7 9 21 27 63 189 . Then the Rational Roots Tests yields the following possible solutions:
$$ \pm \frac{ 1 }{ 1 } , ~ \pm \frac{ 1 }{ 3 } , ~ \pm \frac{ 3 }{ 1 } , ~ \pm \frac{ 3 }{ 3 } , ~ \pm \frac{ 7 }{ 1 } , ~ \pm \frac{ 7 }{ 3 } , ~ \pm \frac{ 9 }{ 1 } , ~ \pm \frac{ 9 }{ 3 } , ~ \pm \frac{ 21 }{ 1 } , ~ \pm \frac{ 21 }{ 3 } , ~ \pm \frac{ 27 }{ 1 } , ~ \pm \frac{ 27 }{ 3 } , ~ \pm \frac{ 63 }{ 1 } , ~ \pm \frac{ 63 }{ 3 } , ~ \pm \frac{ 189 }{ 1 } , ~ \pm \frac{ 189 }{ 3 } ~ $$Substitute the POSSIBLE roots one by one into the polynomial to find the actual roots. Start first with the whole numbers.
If we plug these values into the polynomial $ P(x) $, we obtain $ P(-3) = 0 $.
To find remaining zeros we use Factor Theorem. This theorem states that if $\frac{p}{q}$ is root of the polynomial then this polynomial can be divided with $ \color{blue}{q x - p} $. In this example:
Divide $ P(x) $ with $ \color{blue}{x + 3} $
$$ \frac{ 3x^{3}-3x^{2}-99x-189 }{ \color{blue}{ x + 3 } } = 3x^{2}-12x-63 $$Polynomial $ 3x^{2}-12x-63 $ can be used to find the remaining roots.
$ \color{blue}{ 3x^{2}-12x-63 } $ is a second degree polynomial. For a detailed answer how to find its roots you can use step-by-step quadratic equation solver.