$ \color{blue}{ 2x^{4}-11x^{3}+26x^{2}-66x+84 } $ is a polynomial of degree 4. To find zeros for polynomials of degree 3 or higher we use Rational Root Test.
The Rational Root Theorem tells you that if the polynomial has a rational zero then it must be a fraction $ \dfrac{p}{q} $, where p is a factor of the trailing constant and q is a factor of the leading coefficient.
The factors of the leading coefficient ( 2 ) are 1 2 .The factors of the constant term (84) are 1 2 3 4 6 7 12 14 21 28 42 84 . Then the Rational Roots Tests yields the following possible solutions:
$$ \pm \frac{ 1 }{ 1 } , ~ \pm \frac{ 1 }{ 2 } , ~ \pm \frac{ 2 }{ 1 } , ~ \pm \frac{ 2 }{ 2 } , ~ \pm \frac{ 3 }{ 1 } , ~ \pm \frac{ 3 }{ 2 } , ~ \pm \frac{ 4 }{ 1 } , ~ \pm \frac{ 4 }{ 2 } , ~ \pm \frac{ 6 }{ 1 } , ~ \pm \frac{ 6 }{ 2 } , ~ \pm \frac{ 7 }{ 1 } , ~ \pm \frac{ 7 }{ 2 } , ~ \pm \frac{ 12 }{ 1 } , ~ \pm \frac{ 12 }{ 2 } , ~ \pm \frac{ 14 }{ 1 } , ~ \pm \frac{ 14 }{ 2 } , ~ \pm \frac{ 21 }{ 1 } , ~ \pm \frac{ 21 }{ 2 } , ~ \pm \frac{ 28 }{ 1 } , ~ \pm \frac{ 28 }{ 2 } , ~ \pm \frac{ 42 }{ 1 } , ~ \pm \frac{ 42 }{ 2 } , ~ \pm \frac{ 84 }{ 1 } , ~ \pm \frac{ 84 }{ 2 } ~ $$Substitute the POSSIBLE roots one by one into the polynomial to find the actual roots. Start first with the whole numbers.
If we plug these values into the polynomial $ P(x) $, we obtain $ P(2) = 0 $.
To find remaining zeros we use Factor Theorem. This theorem states that if $\frac{p}{q}$ is root of the polynomial then this polynomial can be divided with $ \color{blue}{q x - p} $. In this example:
Divide $ P(x) $ with $ \color{blue}{x - 2} $
$$ \frac{ 2x^{4}-11x^{3}+26x^{2}-66x+84 }{ \color{blue}{ x - 2 } } = 2x^{3}-7x^{2}+12x-42 $$Polynomial $ 2x^{3}-7x^{2}+12x-42 $ can be used to find the remaining roots.
Use the same procedure to find roots of $ 2x^{3}-7x^{2}+12x-42 $
When you get second degree polynomial use step-by-step quadratic equation solver to find two remaining roots.