back to index
$$225x+\frac{981}{1000}\cdot\frac{1}{2}x^2 = 0$$
Answer
$$ \begin{matrix}x_1 = 0 & x_2 = -\dfrac{ 50000 }{ 109 } \\[1 em] \end{matrix} $$
Explanation
$$ \begin{aligned} 225x+\frac{981}{1000}\cdot\frac{1}{2}x^2 &= 0&& \text{multiply ALL terms by } \color{blue}{ 1000 }. \\[1 em]1000\cdot225x+1000 \cdot \frac{981}{1000}\cdot\frac{1}{2}x^2 &= 1000\cdot0&& \text{cancel out the denominators} \\[1 em]225000x+\frac{981}{2}x^2 &= 0&& \text{multiply ALL terms by } \color{blue}{ 2 }. \\[1 em]2\cdot225000x+2 \cdot \frac{981}{2}x^2 &= 2\cdot0&& \text{cancel out the denominators} \\[1 em]450000x+981x^2 &= 0&& \text{simplify left side} \\[1 em]981x^2+450000x &= 0&& \\[1 em] \end{aligned} $$
In order to solve $ \color{blue}{ 981x^{2}+450000x = 0 } $, first we need to factor our $ x $.
$$ 981x^{2}+450000x = x \left( 981x+450000 \right) $$
$ x = 0 $ is a root of multiplicity $ 1 $.
The second root can be found by solving equation $ 981x+450000 = 0$.
This page was created using
Polynomial Equations Solver