back to index
$$113152\cdot(1-x^{9+1})-113152\cdot(1-x) = (1-x)\cdot1098200$$
Answer
$$ \begin{matrix}x_1 = 1 & x_2 = 1.01506 & x_3 = 0.88342+0.88804i \\[1 em] x_4 = 0.88342-0.88804i & x_5 = -0.72985+1.14561i & x_6 = -0.72985-1.14561i \\[1 em] x_7 = -1.29854+0.45108i & x_8 = -1.29854-0.45108i & x_9 = 0.13744+1.31486i \\[1 em] x_10 = 0.13744-1.31486i & \\[1 em] \end{matrix} $$
Explanation
$$ \begin{aligned} 113152\cdot(1-x^{9+1})-113152\cdot(1-x) &= (1-x)\cdot1098200&& \text{simplify left and right hand side} \\[1 em]113152\cdot(1-x^{10})-113152\cdot(1-x) &= 1098200-1098200x&& \\[1 em]113152-113152x^{10}-(113152-113152x) &= -1098200x+1098200&& \\[1 em]113152-113152x^{10}-113152+113152x &= -1098200x+1098200&& \\[1 em]113152-113152x^{10}-113152+113152x &= -1098200x+1098200&& \\[1 em]-113152x^{10}+113152x &= -1098200x+1098200&& \text{move all terms to the left hand side } \\[1 em]-113152x^{10}+113152x+1098200x-1098200 &= 0&& \text{simplify left side} \\[1 em]-113152x^{10}+1211352x-1098200 &= 0&& \\[1 em] \end{aligned} $$
This page was created using
Polynomial Equations Solver