back to index
$$107328\cdot(1-x^{8+1})-107328\cdot(1-x) = (1-x)\cdot933400$$
Answer
$$ \begin{matrix}x_1 = 1 & x_2 = 1.01853 & x_3 = -1.41259 \\[1 em] x_4 = 0.8183+0.99277i & x_5 = 0.8183-0.99277i & x_6 = -1.02585+0.95439i \\[1 em] x_7 = -1.02585-0.95439i & x_8 = -0.09542+1.36053i & x_9 = -0.09542-1.36053i \end{matrix} $$
Explanation
$$ \begin{aligned} 107328\cdot(1-x^{8+1})-107328\cdot(1-x) &= (1-x)\cdot933400&& \text{simplify left and right hand side} \\[1 em]107328\cdot(1-x^9)-107328\cdot(1-x) &= 933400-933400x&& \\[1 em]107328-107328x^9-(107328-107328x) &= -933400x+933400&& \\[1 em]107328-107328x^9-107328+107328x &= -933400x+933400&& \\[1 em]107328-107328x^9-107328+107328x &= -933400x+933400&& \\[1 em]-107328x^9+107328x &= -933400x+933400&& \text{move all terms to the left hand side } \\[1 em]-107328x^9+107328x+933400x-933400 &= 0&& \text{simplify left side} \\[1 em]-107328x^9+1040728x-933400 &= 0&& \\[1 em] \end{aligned} $$
This page was created using
Polynomial Equations Solver