back to index
$$107328\cdot(1-x^{8+1})-107328\cdot(1-x) = (1-x)\cdot932500$$
Answer
$$ \begin{matrix}x_1 = 1 & x_2 = 1.01832 & x_3 = -1.41243 \\[1 em] x_4 = 0.81821+0.99266i & x_5 = 0.81821-0.99266i & x_6 = -1.02574+0.95428i \\[1 em] x_7 = -1.02574-0.95428i & x_8 = -0.09541+1.36038i & x_9 = -0.09541-1.36038i \end{matrix} $$
Explanation
$$ \begin{aligned} 107328\cdot(1-x^{8+1})-107328\cdot(1-x) &= (1-x)\cdot932500&& \text{simplify left and right hand side} \\[1 em]107328\cdot(1-x^9)-107328\cdot(1-x) &= 932500-932500x&& \\[1 em]107328-107328x^9-(107328-107328x) &= -932500x+932500&& \\[1 em]107328-107328x^9-107328+107328x &= -932500x+932500&& \\[1 em]107328-107328x^9-107328+107328x &= -932500x+932500&& \\[1 em]-107328x^9+107328x &= -932500x+932500&& \text{move all terms to the left hand side } \\[1 em]-107328x^9+107328x+932500x-932500 &= 0&& \text{simplify left side} \\[1 em]-107328x^9+1039828x-932500 &= 0&& \\[1 em] \end{aligned} $$
This page was created using
Polynomial Equations Solver