back to index
$$107328\cdot(1-x^{8+1})-107328\cdot(1-x) = (1-x)\cdot930200$$
Answer
$$ \begin{matrix}x_1 = 1 & x_2 = 1.01777 & x_3 = -1.41204 \\[1 em] x_4 = 0.81798+0.99239i & x_5 = 0.81798-0.99239i & x_6 = -1.02546+0.95402i \\[1 em] x_7 = -1.02546-0.95402i & x_8 = -0.09538+1.36i & x_9 = -0.09538-1.36i \end{matrix} $$
Explanation
$$ \begin{aligned} 107328\cdot(1-x^{8+1})-107328\cdot(1-x) &= (1-x)\cdot930200&& \text{simplify left and right hand side} \\[1 em]107328\cdot(1-x^9)-107328\cdot(1-x) &= 930200-930200x&& \\[1 em]107328-107328x^9-(107328-107328x) &= -930200x+930200&& \\[1 em]107328-107328x^9-107328+107328x &= -930200x+930200&& \\[1 em]107328-107328x^9-107328+107328x &= -930200x+930200&& \\[1 em]-107328x^9+107328x &= -930200x+930200&& \text{move all terms to the left hand side } \\[1 em]-107328x^9+107328x+930200x-930200 &= 0&& \text{simplify left side} \\[1 em]-107328x^9+1037528x-930200 &= 0&& \\[1 em] \end{aligned} $$
This page was created using
Polynomial Equations Solver