back to index
$$\frac{1}{7}-x^2 = 0$$
Answer
$$ \begin{matrix}x_1 = - \dfrac{\sqrt{ 7 }}{ 7 } & x_2 = \dfrac{\sqrt{ 7 }}{ 7 } \\[1 em] \end{matrix} $$
Explanation
$$ \begin{aligned} \frac{1}{7}-x^2 &= 0&& \text{multiply ALL terms by } \color{blue}{ 7 }. \\[1 em]7\cdot\frac{1}{7}-7x^2 &= 7\cdot0&& \text{cancel out the denominators} \\[1 em]1-7x^2 &= 0&& \text{simplify left side} \\[1 em]-7x^2+1 &= 0&& \\[1 em] \end{aligned} $$
$ -7x^{2}+1 = 0 $ is a quadratic equation.
You can use step-by-step quadratic equation solver to see a detailed explanation on how to solve this equation.
This page was created using
Polynomial Equations Solver