back to index
$$1\cdot5x(x-1)+4 = 139$$
Answer
$$ \begin{matrix}x_1 = \dfrac{ 1 }{ 2 }-\dfrac{\sqrt{ 109 }}{ 2 } & x_2 = \dfrac{ 1 }{ 2 }+\dfrac{\sqrt{ 109 }}{ 2 } \\[1 em] \end{matrix} $$
Explanation
$$ \begin{aligned} 1\cdot5x(x-1)+4 &= 139&& \text{simplify left side} \\[1 em]5x^2-5x+4 &= 139&& \text{move all terms to the left hand side } \\[1 em]5x^2-5x+4-139 &= 0&& \text{simplify left side} \\[1 em]5x^2-5x-135 &= 0&& \\[1 em] \end{aligned} $$
$ 5x^{2}-5x-135 = 0 $ is a quadratic equation.
You can use step-by-step quadratic equation solver to see a detailed explanation on how to solve this equation.
This page was created using
Polynomial Equations Solver