back to index
$$0 = x^2+\frac{5}{2}x+\frac{87}{2}$$
Answer
$$ \begin{matrix}x_1 = -\dfrac{ 5 }{ 4 }+\dfrac{\sqrt{ 671 }}{ 4 }i & x_2 = -\dfrac{ 5 }{ 4 }-\dfrac{\sqrt{ 671 }}{ 4 }i \\[1 em] \end{matrix} $$
Explanation
$$ \begin{aligned} 0 &= x^2+\frac{5}{2}x+\frac{87}{2}&& \text{multiply ALL terms by } \color{blue}{ 2 }. \\[1 em]2\cdot0 &= 2x^2+2 \cdot \frac{5}{2}x+2\cdot\frac{87}{2}&& \text{cancel out the denominators} \\[1 em]0 &= 2x^2+5x+87&& \text{move all terms to the left hand side } \\[1 em]0-2x^2-5x-87 &= 0&& \text{simplify left side} \\[1 em]-2x^2-5x-87 &= 0&& \\[1 em] \end{aligned} $$
$ -2x^{2}-5x-87 = 0 $ is a quadratic equation.
You can use step-by-step quadratic equation solver to see a detailed explanation on how to solve this equation.
This page was created using
Polynomial Equations Solver