back to index
$$0 = 6+37x-16x^2$$
Answer
$$ \begin{matrix}x_1 = \dfrac{ 37 }{ 32 }-\dfrac{\sqrt{ 1753 }}{ 32 } & x_2 = \dfrac{ 37 }{ 32 }+\dfrac{\sqrt{ 1753 }}{ 32 } \\[1 em] \end{matrix} $$
Explanation
$$ \begin{aligned} 0 &= 6+37x-16x^2&& \text{simplify right side} \\[1 em]0 &= -16x^2+37x+6&& \text{move all terms to the left hand side } \\[1 em]0+16x^2-37x-6 &= 0&& \text{simplify left side} \\[1 em]16x^2-37x-6 &= 0&& \\[1 em] \end{aligned} $$
$ 16x^{2}-37x-6 = 0 $ is a quadratic equation.
You can use step-by-step quadratic equation solver to see a detailed explanation on how to solve this equation.
This page was created using
Polynomial Equations Solver