back to index
$$-98 \cdot \frac{x^2}{20}-4x+500 = 0$$
Answer
$$ \begin{matrix}x_1 = -\dfrac{ 20 }{ 49 }-\dfrac{ 10 \sqrt{ 2454}}{ 49 } & x_2 = -\dfrac{ 20 }{ 49 }+\dfrac{ 10 \sqrt{ 2454}}{ 49 } \\[1 em] \end{matrix} $$
Explanation
$$ \begin{aligned} -98 \cdot \frac{x^2}{20}-4x+500 &= 0&& \text{multiply ALL terms by } \color{blue}{ 20 }. \\[1 em]-20\cdot98 \cdot \frac{x^2}{20}-20\cdot4x+20\cdot500 &= 20\cdot0&& \text{cancel out the denominators} \\[1 em]-98x^2-80x+10000 &= 0&& \\[1 em] \end{aligned} $$
$ -98x^{2}-80x+10000 = 0 $ is a quadratic equation.
You can use step-by-step quadratic equation solver to see a detailed explanation on how to solve this equation.
This page was created using
Polynomial Equations Solver