$ \color{blue}{ -80x^{3}+32x^{2}+5x-2 } $ is a polynomial of degree 3. To find zeros for polynomials of degree 3 or higher we use Rational Root Test.
The Rational Root Theorem tells you that if the polynomial has a rational zero then it must be a fraction $ \dfrac{p}{q} $, where p is a factor of the trailing constant and q is a factor of the leading coefficient.
The factors of the leading coefficient ( -80 ) are 1 2 4 5 8 10 16 20 40 80 .The factors of the constant term (-2) are 1 2 . Then the Rational Roots Tests yields the following possible solutions:
$$ \pm \frac{ 1 }{ 1 } , ~ \pm \frac{ 1 }{ 2 } , ~ \pm \frac{ 1 }{ 4 } , ~ \pm \frac{ 1 }{ 5 } , ~ \pm \frac{ 1 }{ 8 } , ~ \pm \frac{ 1 }{ 10 } , ~ \pm \frac{ 1 }{ 16 } , ~ \pm \frac{ 1 }{ 20 } , ~ \pm \frac{ 1 }{ 40 } , ~ \pm \frac{ 1 }{ 80 } , ~ \pm \frac{ 2 }{ 1 } , ~ \pm \frac{ 2 }{ 2 } , ~ \pm \frac{ 2 }{ 4 } , ~ \pm \frac{ 2 }{ 5 } , ~ \pm \frac{ 2 }{ 8 } , ~ \pm \frac{ 2 }{ 10 } , ~ \pm \frac{ 2 }{ 16 } , ~ \pm \frac{ 2 }{ 20 } , ~ \pm \frac{ 2 }{ 40 } , ~ \pm \frac{ 2 }{ 80 } ~ $$Substitute the POSSIBLE roots one by one into the polynomial to find the actual roots. Start first with the whole numbers.
If we plug these values into the polynomial $ P(x) $, we obtain $ P(\frac{ 1 }{ 4 }) = 0 $.
To find remaining zeros we use Factor Theorem. This theorem states that if $\frac{p}{q}$ is root of the polynomial then this polynomial can be divided with $ \color{blue}{q x - p} $. In this example:
Divide $ P(x) $ with $ \color{blue}{ 4 x - 1 } $
$$ \frac{ -80x^{3}+32x^{2}+5x-2 }{ \color{blue}{ 4x - 1 } } = -20x^{2}+3x+2 $$Polynomial $ -20x^{2}+3x+2 $ can be used to find the remaining roots.
$ \color{blue}{ -20x^{2}+3x+2 } $ is a second degree polynomial. For a detailed answer how to find its roots you can use step-by-step quadratic equation solver.