back to index
$$-6x^2-4 = 9x^2-7x$$
Answer
$$ \begin{matrix}x_1 = \dfrac{ 7 }{ 30 }+\dfrac{\sqrt{ 191 }}{ 30 }i & x_2 = \dfrac{ 7 }{ 30 }-\dfrac{\sqrt{ 191 }}{ 30 }i \\[1 em] \end{matrix} $$
Explanation
$$ \begin{aligned} -6x^2-4 &= 9x^2-7x&& \text{move all terms to the left hand side } \\[1 em]-6x^2-4-9x^2+7x &= 0&& \text{simplify left side} \\[1 em]-15x^2+7x-4 &= 0&& \\[1 em] \end{aligned} $$
$ -15x^{2}+7x-4 = 0 $ is a quadratic equation.
You can use step-by-step quadratic equation solver to see a detailed explanation on how to solve this equation.
This page was created using
Polynomial Equations Solver