back to index
$$-\frac{1}{3}x+3x^2+5x-50 = 0$$
Answer
$$ \begin{matrix}x_1 = -\dfrac{ 7 }{ 9 }-\dfrac{\sqrt{ 1399 }}{ 9 } & x_2 = -\dfrac{ 7 }{ 9 }+\dfrac{\sqrt{ 1399 }}{ 9 } \\[1 em] \end{matrix} $$
Explanation
$$ \begin{aligned} -\frac{1}{3}x+3x^2+5x-50 &= 0&& \text{multiply ALL terms by } \color{blue}{ 3 }. \\[1 em]-3 \cdot \frac{1}{3}x+3\cdot3x^2+3\cdot5x-3\cdot50 &= 3\cdot0&& \text{cancel out the denominators} \\[1 em]-x+9x^2+15x-150 &= 0&& \text{simplify left side} \\[1 em]9x^2+14x-150 &= 0&& \\[1 em] \end{aligned} $$
$ 9x^{2}+14x-150 = 0 $ is a quadratic equation.
You can use step-by-step quadratic equation solver to see a detailed explanation on how to solve this equation.
This page was created using
Polynomial Equations Solver