$ \color{blue}{ x^{3}+3x^{2}-54x-112 } $ is a polynomial of degree 3. To find zeros for polynomials of degree 3 or higher we use Rational Root Test.
The Rational Root Theorem tells you that if the polynomial has a rational zero then it must be a fraction $ \dfrac{p}{q} $, where p is a factor of the trailing constant and q is a factor of the leading coefficient.
The factor of the leading coefficient ( 1 ) is 1 .The factors of the constant term (-112) are 1 2 4 7 8 14 16 28 56 112 . Then the Rational Roots Tests yields the following possible solutions:
$$ \pm \frac{ 1 }{ 1 } , ~ \pm \frac{ 2 }{ 1 } , ~ \pm \frac{ 4 }{ 1 } , ~ \pm \frac{ 7 }{ 1 } , ~ \pm \frac{ 8 }{ 1 } , ~ \pm \frac{ 14 }{ 1 } , ~ \pm \frac{ 16 }{ 1 } , ~ \pm \frac{ 28 }{ 1 } , ~ \pm \frac{ 56 }{ 1 } , ~ \pm \frac{ 112 }{ 1 } ~ $$Substitute the POSSIBLE roots one by one into the polynomial to find the actual roots. Start first with the whole numbers.
If we plug these values into the polynomial $ P(x) $, we obtain $ P(-2) = 0 $.
To find remaining zeros we use Factor Theorem. This theorem states that if $\frac{p}{q}$ is root of the polynomial then this polynomial can be divided with $ \color{blue}{q x - p} $. In this example:
Divide $ P(x) $ with $ \color{blue}{x + 2} $
$$ \frac{ x^{3}+3x^{2}-54x-112 }{ \color{blue}{ x + 2 } } = x^{2}+x-56 $$Polynomial $ x^{2}+x-56 $ can be used to find the remaining roots.
$ \color{blue}{ x^{2}+x-56 } $ is a second degree polynomial. For a detailed answer how to find its roots you can use step-by-step quadratic equation solver.