back to index
$$(a+6)^2-4(a+6)-32 = 0$$
Answer
$$ \begin{matrix}a_1 = 2 & a_2 = -10 \\[1 em] \end{matrix} $$
Explanation
$$ \begin{aligned} (a+6)^2-4(a+6)-32 &= 0&& \text{simplify left side} \\[1 em]a^2+12a+36-4(a+6)-32 &= 0&& \\[1 em]a^2+12a+36-(4a+24)-32 &= 0&& \\[1 em]a^2+12a+36-4a-24-32 &= 0&& \\[1 em]a^2+8a-20 &= 0&& \\[1 em] \end{aligned} $$
$ x^{2}+8x-20 = 0 $ is a quadratic equation.
You can use step-by-step quadratic equation solver to see a detailed explanation on how to solve this equation.
This page was created using
Polynomial Equations Solver