back to index
$$(8+9)x\cdot10x\cdot8+9x\cdot10 = 0$$
Answer
$$ \begin{matrix}x_1 = 0 & x_2 = -\dfrac{ 9 }{ 136 } \\[1 em] \end{matrix} $$
Explanation
$$ \begin{aligned} (8+9)x\cdot10x\cdot8+9x\cdot10 &= 0&& \text{simplify left side} \\[1 em]17x\cdot10x\cdot8+90x &= 0&& \\[1 em]1360x^2+90x &= 0&& \\[1 em] \end{aligned} $$
In order to solve $ \color{blue}{ 1360x^{2}+90x = 0 } $, first we need to factor our $ x $.
$$ 1360x^{2}+90x = x \left( 1360x+90 \right) $$
$ x = 0 $ is a root of multiplicity $ 1 $.
The second root can be found by solving equation $ 1360x+90 = 0$.
This page was created using
Polynomial Equations Solver