back to index
$$(888\cdot10^{10}-x)(-2\cdot10^8-x)+5\cdot10^{11}\cdot2\cdot10^5 = 0$$
Answer
$$ \begin{matrix}x_1 = 443+85 \sqrt{ 111 }i & x_2 = 443-85 \sqrt{ 111 }i \\[1 em] \end{matrix} $$
Explanation
$$ \begin{aligned} (888\cdot10^{10}-x)(-2\cdot10^8-x)+5\cdot10^{11}\cdot2\cdot10^5 &= 0&& \text{simplify left side} \\[1 em](888\cdot10000000000-x)(-2\cdot100000000-x)+5\cdot100000000000\cdot2\cdot100000 &= 0&& \\[1 em](888-x)\cdot(-2-x)+1000000 &= 0&& \\[1 em]-1776-888x+2x+x^2+1000000 &= 0&& \\[1 em]x^2-886x+998224 &= 0&& \\[1 em] \end{aligned} $$
$ x^{2}-886x+998224 = 0 $ is a quadratic equation.
You can use step-by-step quadratic equation solver to see a detailed explanation on how to solve this equation.
This page was created using
Polynomial Equations Solver