back to index
$$\frac{6a^2+3a^6+9a^3}{3} = 0$$
Answer
$$ \begin{matrix}a_1 = 0 & a_2 = -1 & a_3 = -0.81054 \\[1 em] a_4 = 0.90527+1.28374i & a_5 = 0.90527-1.28374i \\[1 em] \end{matrix} $$
Explanation
$$ \begin{aligned} \frac{6a^2+3a^6+9a^3}{3} &= 0&& \text{multiply ALL terms by } \color{blue}{ 3 }. \\[1 em]3 \cdot \frac{6a^2+3a^6+9a^3}{3} &= 3\cdot0&& \text{cancel out the denominators} \\[1 em]6a^2+3a^6+9a^3 &= 0&& \text{simplify left side} \\[1 em]3a^6+9a^3+6a^2 &= 0&& \\[1 em] \end{aligned} $$
This page was created using
Polynomial Equations Solver