back to index
$$(4-x)(\frac{6}{5}-x) = 0$$
Answer
$$ \begin{matrix}x_1 = 4 & x_2 = \dfrac{ 6 }{ 5 } \\[1 em] \end{matrix} $$
Explanation
$$ \begin{aligned} (4-x)(\frac{6}{5}-x) &= 0&& \text{simplify left side} \\[1 em](4-x)\frac{-5x+6}{5} &= 0&& \\[1 em]\frac{5x^2-26x+24}{5} &= 0&& \text{multiply ALL terms by } \color{blue}{ 5 }. \\[1 em]5 \cdot \frac{5x^2-26x+24}{5} &= 5\cdot0&& \text{cancel out the denominators} \\[1 em]5x^2-26x+24 &= 0&& \\[1 em] \end{aligned} $$
$ 5x^{2}-26x+24 = 0 $ is a quadratic equation.
You can use step-by-step quadratic equation solver to see a detailed explanation on how to solve this equation.
This page was created using
Polynomial Equations Solver