back to index
$$(3x-2)(3x+2) = x^2$$
Answer
$$ \begin{matrix}x_1 = - \dfrac{\sqrt{ 2 }}{ 2 } & x_2 = \dfrac{\sqrt{ 2 }}{ 2 } \\[1 em] \end{matrix} $$
Explanation
$$ \begin{aligned} (3x-2)(3x+2) &= x^2&& \text{simplify left side} \\[1 em]9x^2+6x-6x-4 &= x^2&& \\[1 em]9x^2+6x-6x-4 &= x^2&& \\[1 em]9x^2-4 &= x^2&& \text{move all terms to the left hand side } \\[1 em]9x^2-4-x^2 &= 0&& \text{simplify left side} \\[1 em]8x^2-4 &= 0&& \\[1 em] \end{aligned} $$
$ 8x^{2}-4 = 0 $ is a quadratic equation.
You can use step-by-step quadratic equation solver to see a detailed explanation on how to solve this equation.
This page was created using
Polynomial Equations Solver