back to index
$$3x^2+x+2x+5+6x-1 = 0$$
Answer
$$ \begin{matrix}x_1 = -\dfrac{ 3 }{ 2 }-\dfrac{\sqrt{ 33 }}{ 6 } & x_2 = -\dfrac{ 3 }{ 2 }+\dfrac{\sqrt{ 33 }}{ 6 } \\[1 em] \end{matrix} $$
Explanation
$$ \begin{aligned} 3x^2+x+2x+5+6x-1 &= 0&& \text{simplify left side} \\[1 em]3x^2+3x+5+6x-1 &= 0&& \\[1 em]3x^2+9x+4 &= 0&& \\[1 em] \end{aligned} $$
$ 3x^{2}+9x+4 = 0 $ is a quadratic equation.
You can use step-by-step quadratic equation solver to see a detailed explanation on how to solve this equation.
This page was created using
Polynomial Equations Solver