back to index
$$\frac{2z^2+13z-70}{z^2-49} = 0$$
Answer
$$ \begin{matrix}z_1 = \dfrac{ 7 }{ 2 } & z_2 = -10 \\[1 em] \end{matrix} $$
Explanation
$$ \begin{aligned} \frac{2z^2+13z-70}{z^2-49} &= 0&& \text{multiply ALL terms by } \color{blue}{ z^2-49 }. \\[1 em](z^2-49)\frac{2z^2+13z-70}{z^2-49} &= (z^2-49)\cdot0&& \text{cancel out the denominators} \\[1 em]2z^2+13z-70 &= 0&& \\[1 em] \end{aligned} $$
$ 2x^{2}+13x-70 = 0 $ is a quadratic equation.
You can use step-by-step quadratic equation solver to see a detailed explanation on how to solve this equation.
This page was created using
Polynomial Equations Solver