back to index
$$2x^2+6x+1-(3x^2+3x+9) = 5x^2+3x+9+10$$
Answer
$$ \begin{matrix}x_1 = \dfrac{ 3 \sqrt{ 2}}{ 2 } i & x_2 = -3 \dfrac{\sqrt{ 2 }}{ 2 } i \\[1 em] \end{matrix} $$
Explanation
$$ \begin{aligned} 2x^2+6x+1-(3x^2+3x+9) &= 5x^2+3x+9+10&& \text{simplify left and right hand side} \\[1 em]2x^2+6x+1-3x^2-3x-9 &= 5x^2+3x+19&& \\[1 em]-x^2+3x-8 &= 5x^2+3x+19&& \text{move all terms to the left hand side } \\[1 em]-x^2+3x-8-5x^2-3x-19 &= 0&& \text{simplify left side} \\[1 em]-x^2+3x-8-5x^2-3x-19 &= 0&& \\[1 em]-6x^2-27 &= 0&& \\[1 em] \end{aligned} $$
$ -6x^{2}-27 = 0 $ is a quadratic equation.
You can use step-by-step quadratic equation solver to see a detailed explanation on how to solve this equation.
This page was created using
Polynomial Equations Solver