LCM( 96, 20 ) = 480
Step 1: Write down factorisation of each number:
96 = 2 · 2 · 2 · 2 · 2 · 3
20 = 2 · 2 · 5
Step 2 : Match primes vertically:
96 | = | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 3 | ||
20 | = | 2 | · | 2 | · | 5 |
Step 3 : Bring down numbers in each column and multiply to get LCM:
96 | = | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 3 | ||||
20 | = | 2 | · | 2 | · | 5 | ||||||||||
LCM | = | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 3 | · | 5 | = | 480 |
This solution can be visualized using a Venn diagram.
The LCM is equal to the product of all the numbers on the diagram.