LCM( 80, 96, 105 ) = 3360
Step 1: Write down factorisation of each number:
80 = 2 · 2 · 2 · 2 · 5
96 = 2 · 2 · 2 · 2 · 2 · 3
105 = 3 · 5 · 7
Step 2 : Match primes vertically:
80 | = | 2 | · | 2 | · | 2 | · | 2 | · | 5 | ||||||
96 | = | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 3 | ||||
105 | = | 3 | · | 5 | · | 7 |
Step 3 : Bring down numbers in each column and multiply to get LCM:
80 | = | 2 | · | 2 | · | 2 | · | 2 | · | 5 | ||||||||
96 | = | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 3 | ||||||
105 | = | 3 | · | 5 | · | 7 | ||||||||||||
LCM | = | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 3 | · | 5 | · | 7 | = | 3360 |
This solution can be visualized using a Venn diagram.
The LCM is equal to the product of all the numbers on the diagram.