LCM( 80, 85, 90 ) = 12240
Step 1: Write down factorisation of each number:
80 = 2 · 2 · 2 · 2 · 5
85 = 5 · 17
90 = 2 · 3 · 3 · 5
Step 2 : Match primes vertically:
80 | = | 2 | · | 2 | · | 2 | · | 2 | · | 5 | ||||||
85 | = | 5 | · | 17 | ||||||||||||
90 | = | 2 | · | 3 | · | 3 | · | 5 |
Step 3 : Bring down numbers in each column and multiply to get LCM:
80 | = | 2 | · | 2 | · | 2 | · | 2 | · | 5 | ||||||||
85 | = | 5 | · | 17 | ||||||||||||||
90 | = | 2 | · | 3 | · | 3 | · | 5 | ||||||||||
LCM | = | 2 | · | 2 | · | 2 | · | 2 | · | 3 | · | 3 | · | 5 | · | 17 | = | 12240 |
This solution can be visualized using a Venn diagram.
The LCM is equal to the product of all the numbers on the diagram.